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Abstract

A two-degree-of-freedom (2-dof) model comprising nonlinear delay differential equations (DDEs) is
analyzed for self-excited oscillations during orthogonal turning. The model includes multiple time delays,
possibility of tool leaving cut, additional process damping (due to flank interference), ploughing force, and
variations in shear angle and friction angle. Assuming a two-period delay at most, an algorithm based on
an existing shooting method for DDEs is developed to simulate tool dynamics and seek periodic solutions.
The multiple-regenerative and tool-leaving-cut effects for 2-dof chatter are simulated via an equivalent
1-dof analysis by introducing a time shift. Thus, the cut profile and instantaneous chip thickness are
obtained by accounting for chatter motions along both axes. While the amplitude and minimum period of
limit cycles computed via shooting and via direct numerical integration compare well, the shooting method
converges much faster. Numerical studies involving machining parameters reveal period-1 motion only, for
the range of cutting parameters considered here. The possibility of subcritical instability, characterized by
the sudden onset of finite-amplitude chatter, is displayed. Additional process damping causes a reduction in
chatter amplitudes as well as the subcritical instability to occur at a larger width of cut. An increase in the
width of cut causes frequent tool-leaving-cut events and increased chatter amplitudes. The frequency of tool
disengagement increases with cutting velocity, despite cutting force in the shank direction remaining
constant over a certain velocity range. The chatter amplitude increases and then decreases when the cutting
velocity or the uncut chip thickness is increased. The present plant model and dynamics would be useful for
state estimator design in active control of tool chatter.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

V, t1,w cutting speed, uncut chip thickness,
width of cut

T time for one work revolution
ðx; yÞ, ðx0; y0Þ present-pass chatter displace-

ment, previous-cut profile (Fig. 1)
xnT nth-previous pass chatter displace-

ment of tool
f; a; g; l shear, rake, clearance, friction angle
Z angle between the x-axis and normal

to the machined surface
ð Þ
�, ~ð Þ, ð Þe solution sought lying on limit cycle,

perturbed quantity/computed solu-
tion, chatter-free evaluation of quan-
tity

ðDfÞB variation in shear angle due to tool
vibration

ðDfÞA variation in shear angle due to wavi-
ness of previous cut

m friction coefficient between chip and
rake

mc friction coefficient between tool nose
and displaced work

c tool penetration depth
VW=T ,VC=T relative velocity between—work

and tool, chip and tool
ex, ey unit vectors along shank, cutting

velocity direction
n unit vector normal to shear plane
cx; cy chatter-free structural and cutting

process damping coefficients
mx;my additional cutting process damping

coefficients

hx; hy total damping coefficients
ðF C ,F T Þ, ðF x,FyÞ cutting and thrust forces,

cutting force components
f x, f y ploughing force components
f sp, Vdm specific ploughing force, volume of

displaced work
ts ultimate shear strength
X½t�,F,F

ðiÞ
l state vector, forcing vector, discre-
tization of forcing vector

t time delay
t, t� time, shifted time
P1½t

��, P½t�� present-displacement profile, corre-
sponding state vector

X 01 ½t
��, X0½t

�� previous-cut profile, correspond-
ing state vector

d, � small tolerances
U½t�,fðiÞl ,DUðiþ1Þ initial-function vector, its dis-

cretized components, its correction
after ith iteration

TðiÞ computed limit cycle period after ith
iteration

DTðiþ1Þ computed correction to limit cycle
period after ith iteration

XT, xT
ðiÞ
l computed state vector over
½T� 2T ;T�, its discretization

rðiÞ, zðiÞ computed residual vector, auxillary
quantity after ith iteration

SðiÞ, gðiÞ computed variation of state vector
with initial function, period

cðiÞ, dðiÞ computed variation of auxillary quan-
tity with initial function, period

S
ðiÞ
ml , g

ðiÞ
l , c

ðiÞ
l discretizations of SðiÞ, gðiÞ, cðiÞ
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1. Introduction

Self-excited vibrations that occur during machining are termed chatter. Chatter degrades
surface finish and causes tool breakage. Passive control of chatter involves limiting the cutting
parameters (like width and depth of cut), which in turn limits productivity.
A pioneering stability analysis of 1-dof regenerative chatter, along the shank or the cutting-

velocity directions, was done by Tobias and Fishwick [1]. They considered the cutting force to be
dependent on the instantaneous chip thickness, and the feed velocity. Ota and Kono [2]
considered the effects of delay terms arising due to the cutting force dependency on the
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Fig. 1. (a) Cutting tool system and coordinates and (b) kinematics for shear angle [18] and VC=T [9].
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instantaneous chip thickness, which in turn depends on the previous cut profile. Hanna and Tobias
[3] modeled the machine–tool structure with nonlinear stiffness and hysteretic damping, and the
cutting force as a cubic polynomial in chip-thickness-variation (yielding nonlinear delay terms).
Their analysis explained experimentally observed ‘finite amplitude instability’ as occurring as a
result of a nearly subcritical instability in the amplitude versus width-of-cut plane (see also Ref. [4]).
Wu and Liu [5] considered a 2-dof system with velocity-dependent friction and an empirical

ploughing force. Besides experimental verification, their work showed that chip–rake friction
caused chatter whereas interference between tool nose and work-limited chatter. Berger et al. [6]
used this model and obtained chaotic/aperiodic and limit-cycle dynamics during small and large
amplitude chatter, respectively. Similar prechatter dynamics were experimentally confirmed by
Johnson and Moon [7], who also presented a 1-dof DDE model. Moon [8] considered velocity-
dependent friction and reported a loss of stability with increasing depth of cut, leading to chatter
in the form of quasi-periodic tool motion. Nosyreva and Molinari [9] considered velocity-
dependent friction and ploughing force. Their multiple-scales analysis revealed saturation
followed by reduction of amplitudes, in accord with experiments.
The 2-dof model of Tlusty and Ismail [10] revealed that tool leaving cut improves stability.

Nonlinearities due to tool leaving cut and due to interference between flank and machined wave
(causing additional process damping) were considered by Jemielniak and Widota [11] and Tarng
et al. [12]. Ploughing force-related damping, due to rounded tool nose and builtup edge, was
modeled by Wu [13] and equivalently by Lee et al. [14] using a neural network.
Stepan [15] introduced an additional (short) regeneration time as the chip moved over the tool

cutting edge. This distributes the force along the tool–chip interface, yielding an integro-
differential equation for the distributed delay. The model predicted greater stability at high cutting
speeds, as observed in experiments. Non-stationary turning was modeled as a non-autonomous



ARTICLE IN PRESS

N.K. Chandiramani, T. Pothala / Journal of Sound and Vibration 290 (2006) 448–464 451
DDE with periodically varying delay by Insperger et al. [16], who obtained, via a semi-discretization
method, new kinds of instability lobes related to period doubling. Stepan and Nagy [17] performed
a center manifold reduction and obtained a simple formula for technological use in deciding the
practical chip width below which chatter is avoided. Their analysis showed the existence and nature
of a Hopf bifurcation in regenerative chatter. Using a 2-dof chatter model with multiple delays and
shear angle variation, Lin and Weng [18] obtained chaotic chatter at certain widths of cut.
Subsequently, Hwang et al. [19] obtained the subcritical bifurcation behavior using the method of
multiple scales as well as the numerical method of Jemielniak and Widota [11]. The regions of
unconditional stability, conditional stability, periodic solution, and instability were demarcated in
the spindle-speed versus width-of-cut parameter plane. Nayfeh et al. [20] also considered
perturbation methods to analyze tool chatter. Koren [21] reviewed the work on control of machine
tools using servocontrol loops to control individual axes, interpolators that coordinate the motion
of axes to track desired contours, and adaptive control of cutting parameters to maximize material
removal rates subject to constraints on the cutting force, etc.
Solutions to the nonlinear ODEs that govern chatter may be obtained using perturbation

methods that are valid for weak nonlinearity, or other more generally applicable methods such as
the harmonic balance-based method or numerical methods including shooting-based methods.
Notable amongst the perturbation methods are Lindstedt–Poincare-based methods, the method
of Multiple Scales, Generalized Averaging, and the Krylov–Bogoliubov–Mitropolsky technique.
Since perturbation methods are applicable to a weakly nonlinear system, they provide reasonable
results only in the vicinity of the Hopf bifurcation point as the machining parameter (i.e., the
width of cut, or the steady-state uncut chip thickness) is varied. Harmonic Balance-based methods
work well for strongly nonlinear systems, i.e., when highly subcritical or supercritical values of
machining parameters are considered. However, they assume periodicity and require some
intuition regarding the number of participating harmonics and the response period (in case of
autonomous systems such as the present one), and the resulting algebraic systems are often
difficult to solve. Hence, a numerical integration approach based on shooting is adopted herein.
In order to actively control turning-tool chatter without reducing productivity, a plant model

that contains all nonlinearities and effects aiding and countering chatter is required. Hence, in this
paper a comprehensive, 2-dof, nonlinear model incorporating multiple regeneration, etc., is
studied. The multiple time delay effect for 2-dof chatter is considered via a reduction to an
equivalent 1-dof analysis by a shift of time scale. Thus, the cut profile and instantaneous chip
thickness are obtained by accounting for x as well as y chatter motions. An efficient shooting-
based numerical algorithm for problems with multiple delays is used to solve for limit cycles, by
assuming a two-period delay at most.
2. Equations governing chatter

Fig. 1(a) shows the tool-work system. The origin O of the x2y system denotes the equilibrium
(i.e., chatter free) position of the tool tip. The origin moves, relative to the work, along the y-axis
with a velocity V (i.e., the cutting speed). The tool base, i.e., O0, and O have identical motion.
Point B and line BA denote the tool tip and the shear plane, respectively. During steady cutting,
BA coincides with OS. The displacement of B with respect to O, and that of A with respect to S, is
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denoted (x, y) and ðx0; y0Þ, respectively. Quantities t1, f, a, g, and l denote uncut chip thickness,
shear angle, rake angle, clearance angle, and friction angle, respectively, and the corresponding
‘e’-subcripted quantity depicts the chatter-free value.
Referring to Fig. 1(a), the instantaneous uncut chip thickness is

t1 ¼ t1e
þ x0½t� � x½t�. (1)

The shankwise chatter displacement—as measured from the mean (i.e., chatter-free) line—during
the nth-previous pass of the tool is defined as xnT ¼ x½t� nT �. Here T is the time for one
revolution of work. During large chatter motions the tool could disengage from the work causing
the machining forces on the tool tip to disappear. This phenomenon is characterized by t1o0.
Thus, the cut profile generated by the end of the previous pass is given as

x0 ¼ min½x1T ; t1e
þ x2T ; 2t1e

þ x3T ; . . .�. (2)

The multiple regenerative effect is due to this dependence of the chip thickness on the chatter
displacements of previous passes (Eqs. (1) and (2)).
The shear angle varies due to the tool vibration and the waviness of the previous-cut surface

(Fig. 1(b)). Combining these two effects yields [18]

f ¼ fe þ ðDfÞB þ ðDfÞA, (3a)

ðDfÞB ¼ tan�1½� _x=ðV þ _yÞ�; ðDfÞA ¼ tan�1½ _x0=ðV þ _y0Þ�. (3b)

Steady-state cutting tests provide the variation in the coefficient of friction between chip and rake,
i.e., mð� tan½l�Þ, as [5]

m ¼ m0 exp½�mmVC=T �, (4)

where coefficients m0 and mm are experimentally determined from cutting test data obtained under
conditions of continuous chip flow. Unlike the Coulomb friction model, this one conforms to
experiments where the chip–rake friction coefficient has been observed to decrease with cutting
speed. The velocity of work relative to the tool is VW=T ¼ � _xex � ðV þ _yÞey. Using the
continuity—across the shear plane—of the relative velocity components normal to the shear plane
[9], i.e., VW=T :n ¼ VC=T :n, the velocity of the chip relative to tool ðVC=T Þ is obtained as

VC=T ¼
ðV þ _yÞ sin½fe þ ðDfÞA� � _x cos½fe þ ðDfÞA�

cos½fe þ ðDfÞA � ae�
. (5)

The chatter-free damping coefficients ðcx; cyÞ represent structural and cutting process damping.
Additional cutting process damping arises due to the interference of the tool flank with the
downward-inclined wavy machined surface [11,12]. Hence, the total damping coefficients are
given as

hx ¼ cxð1�U½� _x�mxZ=gÞ; hy ¼ cyð1�U½� _x�myZ=gÞ. (6)

Here U½�� is the unit step function, Z is the angle (counterclockwise positive) between the x-axis
and the normal to the wavy surface (Fig. 1(a)), and mx, my are additional cutting process damping
coefficients. Thus, one obtains

Z ¼ tan�1½ _x=ðV þ _yÞ� and a ¼ ae � Z. (7)
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As is evident, the ratio �Z=g increases [decreases] as the tool moves down a convex [concave]
surface, and hence the additional damping increases [decreases], as expected, due to increasing
[decreasing] interference between the flank and machined wave.
Due to slight roundedness of the tool nose and the formation of built-up edge, which increases

the effective nose radius, a portion of the work material gets displaced (i.e., extruded) under the
tool. Thus a ploughing force ðf x, f yÞ is exerted on the tool. Following Ref. [13], the ploughing
force components are considered as

f x ¼ f spVdm and f y ¼ �mcf x, (8)

where

Vdm ¼ w
V

V tan ge þ _x
�

V2

ðV tan ge þ _xÞ2
tan ge

2

" #
c2 (9)

is the volume of displaced work. Here f sp, mc, c, and w denote the specific ploughing force, friction
coefficient (assumed constant) between tool nose and displaced work, depth of tool penetration,
and width of cut (i.e., chip width measured perpendicular to the x2y plane), respectively.
The cutting force ðFCÞ and thrust force ðFT Þ shown in Fig. 1(a) are given by the Merchants

Circle relations, i.e.,

FC ¼
wt1ts cos½l� a�

sin½f� cos½fþ l� a�
; FT ¼

wt1ts sin½l� a�
sin½f� cos½fþ l� a�

, (10)

where ts is the ultimate shear strength. Considering the cutting, thrust, ploughing, and total
damping forces, the equations of motion governing chatter are written as (Fig. 1),

m €xþ hx _xþ kxx ¼ ðFx þ f x � ðf xÞeÞU½t1�, (11a)

m €yþ hy _yþ kyy ¼ ðFy þ f y � ðf yÞeÞU½t1�, (11b)

Fx ¼ �FC sin½Z� þ FT cos½Z� � ðFT Þe, (11c)

Fy ¼ �FC cos½Z� � FT sin½Z� þ ðFCÞe, (11d)

where ð�Þe denotes chatter-free evaluations (i.e., with x ¼ _x ¼ y ¼ _y ¼ 0Þ. The cutting force
components Fx and Fy are measured relative to the chatter-free state, i.e., they disappear during
steady cutting ðZ ¼ 0�Þ. These are nonlinear DDEs containing the multiple regenerative effect,
which arises due to the dependence of the cutting and thrust forces on the instantaneous chip
thickness and is characterized by multiple delay terms (Eqs. (1), (2) and (10)). The tool-leaving-cut
effect appears viaU½t1�. The nonlinearity is due to the nonlinear dependence of t1, f, a, l, and Vdm

on the state (x, y, _x, _y).
3. Numerical solution

Defining the state vector as

X½t� ¼ fX 1;X 2;X 3;X 4g
T � fx; _x; y; _ygT, (12)
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the resulting system of DDEs, i.e.,

_X½t� ¼ F½t;X½t�;X½t� t�� subject to X½t� ¼ U½t� ¼ 0 for � tptp0 (13)

is numerically integrated using the RK-4 method. The delay t equals nT where integer n is the
previous-pass number corresponding to the point x0½t� on the previous-cut profile (PCP) (Eq. (2)).
Integration is performed over ½0;T �, i.e., over one revolution of workpiece. Fig. 2(a) shows the
vector sum of x and y chatter displacements, i.e., the present-displacement profile (PDP) P1. For a
constant cutting speed, the horizontal axis denotes time and, equivalently, the distance along the
work circumference. Thus, x½t� ¼ P1½t

�� where t� ¼ tþ y=V is the shifted time. The approximation
of constant y-chatter velocity is tacitly implied in the definition of t�. Using this time shift, the
effect of y-chatter is incorporated into the PDP and consequently into the PCP. The instantaneous
chip thickness is calculated using both these profiles (Eq. (1)) and then used to obtain machining
forces (Eq. (10)). If t140½t1o0� the tool is inside [outside] the cut and machining forces are non-
zero [zero]. A time-step bisection is done to determine the instant when jt1jpd, i.e., when the tool
leaves or enters the cut ðd is a small positive tolerance).
In accordance with Eq. (2), at the end of the integration interval ½0;T � the PCP is updated

(using interpolation) with the state vector—chosen out of the PDP and PCP—that has minimum
X 1½t

��. The updated PCP is used (with interpolation), during the next interval of integration, as
the initial function ðU½t�Þ and also to obtain t1. The Poincarè surface, defined as

fðX 1;X 2;X 3;X 4Þ : X 3 ¼ 0;X 440g (14)

is obtained, and the relative differences over successive Poincarè surface intersections are
computed for X 1, X 2, X 4. If these differences remain below a specified small tolerance for the ith
and ði þmÞth intersection (m is the smallest positive integer for which this holds) then convergence
to an m-period limit cycle occurs and the period is the interval between the ith and ði þmÞth
intersection. A trivial fixed point is obtained if the Poincarè intersections remain trivial. Note that
the numerical integrations are performed in unshifted time t.
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Fig. 2. (a) Time shift and (b) multiple regeneration.
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3.1. Direct integration algorithm

Time integration of Eq. (13) is done for a specified number of revolutions, as follows:

[0] Initialize U½t� (i.e., the intial function) and Profile to zero. Profile contains t�, X 1, X 3, X 4,
corresponding to PCP.
[1] Integration over pth pass ½0;T �:
Integrate the DDEs (13) over time step ½tI ; tO� to obtain X½tO�.
Perform time shift t�O  tO þ y½tO�=V .

Obtain PDP, P½t�O�  X½tO�.

Using interpolation, access Profile at t�O to extract X0½t
�
O�, i.e., the state vector corresponding to

PCP.
Calculate instantaneous chip thickness (Eq. (1)), t1 t1e

þ X 01 ½t
�
O� � P1½t

�
O�.

If t1 changes sign, i.e., if the tool leaves or enters the cut, perform time-step bisection.
Tooldisp ðt�O;P½t

�
O�Þ (here t�O pertains to the end of the bisection if it was performed).

[2] Updating Profile (Eq. (2)): Using interpolation, Profile ðt�O;minX 1
ðProfile;TooldispÞÞ.

[3] Check convergence to limit cycle or fixed point:
Exit if converged or if the number of tool passes exceeds prescribed limit; else, continue at [1]. If
converged to limit cycle then find amplitude and minimum period using Poincarè intersections.

Fig. 2(b) shows the multiple regenerative effect, similar to that reported in Refs. [4,10,11]. Each
continuous wave represents the tool displacement profile corresponding to the pass number
indicated against it. Solid lines represent the machined surface (cut profile) and the dotted ones
indicate tool disengagement. The displacement profile for each pass is shown with respect to the
mean-cut (chatter-free) line of that pass. The mean lines of successive passes appear at a distance
t1e

below. The tool leaves/enters the cut a multiple number of times during a pass. It is observed
that the displacement profile of a pass intersects those of its subsequent two passes only, i.e., the
delay is at most 2T . Hence, in order to implement the following shooting method, U½t� is assumed
to be defined over ½�2T ; 0�.

3.2. Shooting method for periodic solutions

When using direct integration, convergence to a periodic solution is rather slow for parameter
values away from the bifurcation point. A zero initial function is considered since the system is
assumed to start from rest. However, due to nonlinearity, the speed of convergence would
generally also depend on the initial function chosen. Hence, a shooting method is considered to
accelerate convergence. This iterative technique uses Newton’s method to converge to a periodic
solution, if one exists. Following Luzyanina et al. [22] one seeks an initial function, i.e., U�½t�
defined over ½�2T ; 0�, that lies on the limit cycle, and the period T� of the limit cycle. Let XT½U�
denote the segment of the solution obtained over ½T� 2T ;T� subject to initial function U½t�. In
order to impose the condition that the intial function being sought lies on the limit cycle, we
consider the residual equation system that represents this condition, i.e.,

r½U;T� ¼n XT½U� �U ¼ 0. (15)
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This system, being indeterminate, is augmented with a suitably chosen auxillary scalar equation,
i.e.,

z½U;T� ¼ 0. (16)

An iterative solution of Eqs. (15) and (16) would thus converge to ðU�;T�Þ if a periodic solution
existed. A first-order Taylor’s expansion of Eqs. (15) and (16) yields

SðiÞ � I gðiÞ

cðiÞ dðiÞ

" #
DUðiþ1Þ

DTðiþ1Þ

( )
¼ �

r½UðiÞ;TðiÞ�

z½UðiÞ;TðiÞ�

( )
, (17a)

where

SðiÞ � ðqXT=qUÞ
ðiÞ; gðiÞ � ðqXT=qTÞ

ðiÞ, (17b)

cðiÞ � ðqz=qUÞðiÞ; d ðiÞ � ðqz=qTÞðiÞ. (17c)

In Eq. (17), the superscript ðiÞ in the coefficient matrix and the driving vector denote evaluations
using the solution ðUðiÞ;TðiÞÞ obtained after the ith iteration. An initial guess ðUð0Þ;Tð0ÞÞ of the
solution ðU�;T�Þ is chosen. The algorithm for the ði þ 1Þth iteration ði ¼ 0; 1; 2; . . .Þ is

[1] Integrate the DDEs (13) over ½0;TðiÞ� subject to initial function UðiÞ.
[2] Obtain corrections ðDUðiþ1Þ;DTðiþ1ÞÞ: Evaluate the coefficient matrix (using finite differences)

and the driving vector appearing in Eq. (17a) and solve for ðDUðiþ1Þ;DTðiþ1ÞÞ.
[3] Convergence check: Test whether DUðiþ1Þ and DTðiþ1Þ are small relative to UðiÞ and TðiÞ,

respectively. If the corrections are relatively small, the converged solution ðU�;T�Þ ¼ ðUðiÞ;TðiÞÞ

has been obtained (i.e., X
ðiÞ
T ¼ UðiÞ and Eq. (15) is satisfied). If not, iterate the solution, i.e.,

Uðiþ1Þ ¼ UðiÞ þ DUðiþ1Þ; Tðiþ1Þ ¼TðiÞ þ DTðiþ1Þ. (18)

Implementation entails discretization of the n-dimensional initial function vector at ðN þ 1Þ

equally spaced time stations within ½�2T ; 0�, i.e.,

UðiÞ ¼ ffðiÞ11; . . . ;f
ðiÞ
1ðNþ1Þ; . . . ;f

ðiÞ
j1 ; . . . ;f

ðiÞ
jk ; . . . ;f

ðiÞ
jðNþ1Þ; . . . ;f

ðiÞ
1ðNþ1Þ; . . . ;f

ðiÞ
nðNþ1Þg

T. (19)

Step [1] is performed using the discretized initial function vector (with interpolation between
stations, if required). Using interpolation on the solution vector obtained via integration, the
discretized solution vector, i.e.,

X
ðiÞ
T ¼ fxT

ðiÞ
11; . . . ;xT

ðiÞ
nðNþ1Þg

T (20)

is obtained at ðN þ 1Þ stations lying within ½TðiÞ � 2T ;TðiÞ�. The discretized residual vector is
readily computed using (15), (19), and (20). Introduce the equivalent indexing l � ðj � 1Þ
ðN þ 1Þ þ k, e.g., fðiÞl � fðiÞjk . The discretized nðN þ 1Þ � nðN þ 1Þ matrix SðiÞ is obtained using
finite differences. Using the initial function with lth element perturbed by �, i.e.,

~U
ðiÞ
¼ ffðiÞ1 ; . . . ;f

ðiÞ
l þ �; . . . ;f

ðiÞ
ðnNþnÞg

T, (21)
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the perturbed solution vector, i.e.,

~X
ðiÞ

T ¼ f ~x
ðiÞ
T1; . . . ; ~x

ðiÞ
TðnNþnÞg

T, (22)

is obtained via integration. Then one computes

S
ðiÞ
ml ¼ ð ~x

ðiÞ
Tm � x

ðiÞ
TmÞ=�; m ¼ 1; . . . ; nN þ n. (23)

Repeating this procedure for l ¼ 1; . . . ; nN þ n, one obtains SðiÞ. The discretized ðnN þ nÞ-
dimension vector gðiÞ is obtained by perturbing ~T

ðiÞ
¼TðiÞ þ � and computing

g
ðiÞ
l ¼ ðx

ðiÞ
~Tl
� x

ðiÞ
TlÞ=� (24)

using the unperturbed initial function UðiÞ.
The discretized auxillary quantity, appearing in Eqs. (16) and (17a), is defined and computed as

zðiÞ ¼
n
XnNþn

l¼1

F
ðiÞ
l ðf

ðiÞ
l � xT

ðiÞ
l Þ. (25)

Here F
ðiÞ
l is the discretized time-derivative of solution XT or, equivalently, the discretized driving

vector in the state equations (13). The definition in Eq. (25) implies that Eq. (16) is identically
satisfied when Eq. (15) is satisfied, i.e., when the solution converges to a limit cycle ðX

ðiÞ
T ¼ UðiÞÞ.

Furthermore, Eqs. (25) and (16) together describe the requirement that the driving vector become
normal to the residual vector (defined by Eq. (15)) as convergence is approached. This closely
resembles the orthogonality condition proposed by Mees [23] for obtaining periodic solutions of
ODEs. The ðnN þ nÞ discretized vector cðiÞ is computed as

c
ðiÞ
l ¼ ð~z

ðiÞ � zðiÞÞ=�, (26)

where ~zðiÞ is based on TðiÞ and ~U
ðiÞ

with its lth element perturbed. Similarly, dðiÞ is computed as

d ðiÞ ¼ ð~zðiÞ � zðiÞÞ=�, (27)

where ~zðiÞ is based on ~T
ðiÞ

and UðiÞ. Hence Eq. (17a) represents a system of size ðnN þ nþ 1Þ. If
jDfðiþ1Þl =fðiÞl jo�, l ¼ 1; . . . ; nN þ 1, and jDTðiþ1Þ=TðiÞjo� then convergence is achieved. The
minimum period is computed based on Poincarè intersections that occur within the converged
period T�.
4. Results and discussion

Unless mentioned otherwise, all effects appearing in the formulation are considered and the
shooting method is used with the following data:

Cutting parameters [5,13,14,18]: Dia of work ¼ 25mm, t1e
¼ 0:15mm, w ¼ 4:0mm,

V ¼ 200m=min, ae ¼ 38�, mm ¼ 10�06, fe ¼ 50:6�, ge ¼ 20, f sp ¼ 4:1� 105 N/mm3, m0 ¼
mc ¼ 0:3, ts ¼ 700N=mm2, c ¼ 0:0046mm;

Vibration parameters [12]: m ¼ 40:87 kg, cx ¼ cy ¼ 19:73Ns=mm, mx ¼ 1:464, my ¼ 5:564, and
kx ¼ ky ¼ 180 kN=m.
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Fig. 3(a) shows the transient x-chatter response, obtained via direct integration, for parameter
values which make the linearized system unstable. The displacement increases until a steady state
(limit cycle) is slowly reached. This follows the trend reported in Ref. [9]. The limit cycle trajectory
(in the _x2x, _y2y, and _y2 _x planes) obtained via both methods (i.e., shooting and direct
integration) overlaps (Figs. 3(b) and (c)). The minimum period, x-chatter amplitude, and the
number of integration cycles (i.e., work revolutions) until convergence to steady state, are
0.00950141, 0.106324, and 7078, respectively, via direct integration, and 0.00950090, 0.106292,
and 1492, respectively, via shooting. An interesting feature is that the _x and _y chatter dynamics are
nearly in phase, as is evident from the nearly line-like (instead of loop-like) trajectory in Fig. 3(c).
The steady-state x-chatter response is shown in Fig. 3(d). Steady-state responses for the additional
damping force due to flank interference, and the ploughing force, are shown in Figs. 4(a–c). The
additional damping disappears when the tool moves upward along the wavy machined surface
(Figs. 3(d) and 4(a)). An increase in width-of-cut causes the ploughing force magnitude to increase
and the tool to disengage from work more frequently and for a longer duration (Figs. 4(b) and
(c)). Tool disengagement is characterized by the ploughing force suddenly disappearing.
Fig. 5(a) shows the effect of the chatter-free uncut chip thickness on the limit cycle amplitudes

obtained for varying widths of cut. At the critical width (i.e., 3.51mm for t1e
¼ 0:5mm and

3.64mm for t1e
¼ 0:15mm and 0.3mm) the solution transforms from a fixed point to a limit cycle,

i.e., a Hopf bifurcation occurs. For t1e
¼ 0:15 and 0.3mm a sudden jump to a finite-amplitude
Fig. 3. (a) Transient x-chatter motion, (b,c) limit cycles and (d) steady-state x-chatter motion.
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Fig. 4. Steady state: (a) additional process damping force, (b,c) ploughing force—(b) w ¼ 4mm and (c) w ¼ 4:5mm.
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limit cycle occurs, thus indicating a subcritical bifurcation. This is qualitatively similar to the
results of Refs. [3,4,19]. Hence, for these cases, finite amplitude instability (i.e., pre-chatter
motion) is possible for sub-critical widths. As expected, the chatter amplitude increases with uncut
chip thickness (since cutting forces increase with t1e

Þ, in accord with the results in Ref. [4]. The
direct integration method and the shooting method are compared in Table 1 by means of the
number of integration cycles, i.e., work revolutions, required for convergence. The two cases
t1e
¼ 0:15mm and t1e

¼ 0:5mm of Fig. 5(a) are considered. For t1e
¼ 0:5mm, i.e., the supercritical

case, the number of iterations are comparable for w values chosen close to the bifurcation point.
For larger cutting widths (i.e., wX3:85Þ, the shooting method proves more efficient, the
differences becoming more pronounced as the cutting width increases. For t1e

¼ 0:15mm, i.e., the
subcritical case, the shooting method is always more efficient. Thus, when the system starts from
rest, the jump to finite-amplitude periodic-chatter involves long-duration transients.
Fig. 5(b) shows the chatter amplitude versus width for cutting velocities 200 and 220m/min and

t1e
¼ 0:15mm. For a lower cutting speed, the jump occurs for a smaller width and the amplitude is

higher. A similar behavior was reported in Ref. [4] when the speed is decreased up to an extent,
beyond which the trend reverses. The jump phenomenon disappears for larger uncut chip
thickness (i.e., t1e

¼ 0:5mm, Fig. 5(c)), which is in accord with the results in Ref. [4]. Here also
the chatter amplitudes are greater at lower cutting speeds, which follows the behavior reported in
Ref. [18] for the supercritical case. An increase in additional process damping coefficients, mx and
my, results in lower chatter amplitudes as displayed in Fig. 5(d) for t1e

¼ 0:5mm. A similar increase
when t1e

¼ 0:15mm (Fig. 5(e)) causes the jump to occur at a larger width of cut.
The effect of cutting velocity is shown in Fig. 6(a) for various models. Model ‘C’ contains all

effects, model ‘B’ neglects ploughing force and friction variation, and model ‘A’ further neglects
flank interference. Model A predicts a decrease in chatter amplitude when the cutting speed is
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Fig. 5. Chatter amplitude versus width-of-cut, effect of—(a) uncut chip thickness, (b,c) cutting speed, t1e
¼ 0:15,

0.5mm and (d,e) additional process damping coefficients, t1e
¼ 0:5, 0.15mm.
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increased. When additional process damping is included (model B), the amplitude at first increases
with cutting speed and then (beyond V ¼ 130m/min) decreases. The amplitudes are lower for the
additionally damped system (compare A and B). A sudden increase in the rate of amplitude
reduction occurs at V ¼ 240m/min (model B). Further addition of ploughing force and friction
variation effects (model C) yields a marginal reduction in amplitudes (compare B and C). A fixed
point, i.e., cessation of chatter, occurs beyond V ¼ 250m/min. Fig. 6(b) shows that while the
effect of ploughing force is marginal for the value of f sp as considered herein, it generally yields a
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Table 1

Comparison of direct integration method and shooting method

t1e
¼ 0:15mm t1e

¼ 0:5mm

w x-ampl. Cycles for convergence w x-ampl. Cycles for convergence

Direct Shooting Direct Shooting

3.7 0.106231 7072 1507 3.65 0.077437 173 123

3.8 0.106242 7078 1492 3.70 0.112835 293 151

4.0 0.10638 7086 1643 3.75 0.151722 424 254

4.2 0.106535 7103 1571 3.80 0.190606 738 513

4.4 0.107179 7141 1356 3.85 0.229174 1273 489

4.6 0.108306 7211 1447 3.90 0.267315 1958 493

4.8 0.109922 7245 1779 3.95 0.305435 4097 933

5.0 0.112090 7483 1739 4.00 0.344616 7269 946

5.2 0.114395 7557 1779 4.40 0.353083 8358 1026

5.6 0.119725 8179 1705 4.80 0.360455 8743 966

6.0 0.124951 8497 1885 5.20 0.371783 9873 1074
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reduction in chatter amplitude. The variation in chatter amplitude with the chatter-free uncut chip
thickness is shown in Fig. 6(c) for V ¼ 200 and 220m/min. It is interesting to note that the trend
of monotonically increasing amplitudes is reversed at a higher chip thicknesses. This is in accord
with the results in Ref. [18] and in contrast to those reported in Ref. [4] and Fig. 5(a) herein.
A similar behavior is obtained for the cutting force amplitude as shown in Fig. 6(d).
Figs. 7(a) and (b) shows the variation of the amplitudes of cutting force components Fx and Fy

with the cutting speed, for w ¼ 4:0mm and t1e
¼ 0:3 and 0.5mm. The force amplitudes along the

shank ðxÞ direction are smaller when compared to those along the cutting velocity (y) direction. As
expected, the cutting force amplitudes are higher for larger values of chatter-free uncut chip
thickness. The amplitudes increase with cutting speed until V ¼ 90m/min for t1e

¼ 0:3mm, and
V ¼ 115m/min for t1e

¼ 0:5mm. Thereafter, the amplitude remains constant for a wide range of
cutting speed. For speeds beyond V ¼ 230m/min the amplitude decreases and eventually becomes
zero at V ¼ 250m/min, implying cessation of chatter. The range of speeds for which the cutting
force amplitudes remain constant decreases with increase in uncut chip thickness, as also reported
in Ref. [14]. Time traces of steady state Fx are shown in Fig. 7(c and d) for t1e

¼ 0:5mm and
speeds V ¼ 115 and 230m/min, i.e., at the start and end of the range for which the amplitudes are
constant. The cutting force disappears during tool disengagement, which occurs more frequently
at the higher speed despite the cutting force amplitude remaining constant over this range of
speeds.
5. Conclusions and scope

A comprehensive 2-dof model of tool dynamics during turning, involving nonlinear DDEs, has
been considered. Numerical simulations are done using a shooting method for DDEs and the
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results compare well with those from direct integration, with the former proving more efficient.
Based on the numerical simulations, the following conclusions are made: (i) for the parameter
ranges considered, period-1 motion describes the tool dynamics. However, if the stiffness
nonlinearity of the machine tool structure were to be considered (as done in Ref. [3]),
quasiperiodic as well as chaotic motions may occur for the range of parameters considered herein.
(ii) Features of a subcritical Hopf bifurcation could appear in the amplitude versus width-of-cut
plane, for certain parameter values. This implies the possibility of subcritical instability
characterized by sudden onset of finite-amplitude chatter. (iii) Additional process damping
causes a reduction in chatter amplitudes, and the subcritical instability to occur at a larger width
of cut. (iv) An increase in width of cut causes frequent tool-leaving-cut events and increased
chatter amplitudes. (v) Frequency of tool leaving cut increases with cutting velocity, despite the
cutting force in the shank direction remaining constant over a certain velocity range. (vi) The
chatter amplitude at first increases and then decreases when the cutting velocity or the uncut
chip thickness is increased. (vii) For the parameter ranges considered, variations in friction angle
and/or ploughing force have a marginal effect.
The shooting method could be made more efficient using Newton–Picard iterations. Structural

nonlinearities, providing a more accurate representation of the machine–tool structure, could be
included in the model. Hence, real-time active suppression of chatter could be addressed.
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